
Data Collection

A System
atic Study of Recent Sm

art C
ontract Security Vulnerabilities

Zhuo Zhang, Brian Zhang, W
en Xu, Zhiqiang Lin

M
achine Auditable Bugs & Existing Tools

C
ode4rena B

ug R
eports

R
eal-w

orld Exploits

am
ount

of
fungible

tokens
that

the
ow

ner
allow

s
a

spender
to

spend.
N

ote
that

the
first-level

key
is

the
address

of
ow

ner,
and

the
second-level

key
is

the
address

of
spender.

It
is

an
internal

field
that

can
only

be
accessed

by
the

contract’s
functions.

Lines
6-9

defines
an

internal
function,

_
a
p
p
r
o
v
e
(
),

w
hich

updates
the

am
ount

of
allow

ance.
It

internally
updates

_
a
l
l
o
w
a
n
c
e
s
[
o
w
n
e
r
]
[
s
p
e
n
d
e
r
]

at
line

8.
Lines

11-17
define

a
function

t
r
a
n
s
f
e
r
F
r
o
m

that
transfers

a
m
o
u
n
t

tokens
from

address
f
r
o
m

to
address

t
o.

It
is

an
external

function
that

can
be

invoked
by

any
parties

including
users

and
other

sm
art

contracts.A
t

line
13,

the
function

first
validates

that
m
s
g
.
s
e
n
d
e
r

has
sufficient

allow
ance

from
address

f
r
o
m.Itis

achieved
by

the
r
e
q
u
i
r
e

operation.Lines
14-15

update
the

caller’s
allow

ance
via

func-
tion

_
a
p
p
r
o
v
e.Line

16
invokes

_
t
r
a
n
s
f
e
r

to
update

the
balances

of
t
o

and
f
r
o
m.The

bug
happens

atline
15,w

here
the

contract
m

istakenly
uses

the
allow

ance
of

t
o

instead
of

m
s
g
.
s
e
n
d
e
r.

That
is,

the
correct

allow
ance

to
update

is
_
a
l
l
o
w
a
n
c
e
s
[
f
r
o
m
]
[
m
s
g
.
s
e
n
d
e
r
].C

onsidering
thata

victim
user

A
lice

grants
B

ob
an

allow
ance

of
10

tokens,
an

adversary
Eve

can
invoke

t
r
a
n
f
e
r
F
r
o
m
(
A
l
i
c
e
,

B
o
b
,

0
)

w
ithout

any
token

transferred.
H

ow
ever,

since
line

15
updates

Eve’s
allow

ance
as

_
a
l
l
o
w
a
n
c
e
[
A
l
i
c
e
]
[
B
o
b
]

-
0,Eve

illegally
gains

10-token
allow

ance
of

B
ob.

O
bserve

that
this

bug
aligns

better
w

ith
functional

bug
in

traditional
softw

are
w

hile
being

exploitable.
H

um
an

auditors
and

autom
atic

tools
can

hardly
detectitw

ithoutunderstanding
the

m
eaning

of
_
a
l
l
o
w
a
n
c
e
s

and
t
r
a
n
s
f
e
r
F
r
o
m,

as
w

ellas
the

business
m

odel.The
bug

survived
m

ultiple
rounds

of
auditing

w
here

autom
atic

tools
have

been
applied.

III.
R

E
SE

A
R

C
H

Q
U

E
ST

IO
N

S
A

N
D

S
T

U
D

Y
M

E
T

H
O

D
O

L
O

G
Y

In
this

section,
w

e
first

present
the

scope
and

research
questions

of
this

study.W
e

then
explain

our
m

ethodology
of

collecting
and

analyzing
data,as

w
ellas

the
threats

to
validity.

ThreatM
odeland

Scope
ofO

ur
Study.In

ourthreatm
odel,

the
adversary

is
a

contract
user

w
ho

crafts
special

inputs
to

exploit
the

on-chain
contract

and
further

cause
m

onetary
loss.

O
ther

attacks
such

as
insider

attacks
and

spam
attacks

are
out

of
scope.

Insider
attacks

are
launched

by
privileged

users
of

the
contract

(e.g.,
ow

ners
w

ho
m

ight
steal

funds
by

leveraging
the

ow
ner

privileges).
In

spam
attacks,

the
adversary

only
setups

a
trap

and
the

user
has

to
be

lured
to

take
actions

leading
to

undesirable
consequences.

Since
our

study
focuses

on
vulnerabilities

ofon-chain
contracts,w

e
also

exclude
attacks

w
here

off-chain
com

ponents
getinvolved.

R
esearch

Q
uestions.

W
e

target
the

follow
ing

four
key

re-
search

questions.W
e

callexploitable
bugs

thatcan
be

detected
by

existing
autom

atic
tools

m
achine

auditable
bugs

and
the

others
m

achine
unauditable

bugs.
•

(R
Q

1)
W

hat
kinds

of
exploitable

bugs
are

m
achine

auditable
by

existing
tools?

H
ow

m
any

real-w
orld

ex-
ploitable

bugs
are

m
achine

auditable?
•

(R
Q

2)
H

ow
difficultis

itto
auditexploitable

bugs?
•

(R
Q

3)
W

hat
are

the
root

causes,
categories,

and
distri-

butions
of

m
achine

unauditable
bugs?

TA
B

LE
I:C

ategories
of

on-chain
projects

C
ategories

D
escription

Lending
A

llow
users

to
borrow

and
lend

assets
D

exes
A

llow
users

to
sw

ap/trade
crypto-currency

Y
ield

R
ew

ard
users

for
their

staking
Services

Service
providers,e.g.,tokenization

D
erivatives

Projects
thatgetthe

value,risk,and
basic

term
structure

from
an

underlying
asset,e.g.,options

Y
ield

A
ggregator

A
ggregate

yield
from

a
setof

other
projects

R
ealW

orld
A

ssets
Projects

thatassociate
their

values
w

ith
real-w

orld
assets,e.g.,stocks

Stablecoins
C

ryptocurrencies
thatattem

ptto
peg

their
m

arket
value

to
som

e
externalreference,e.g.,U

S
D

ollar
Indexes

Projects
thathave

a
w

ay
to

track
the

perform
ance

of
a

group
of

related
assets

Insurance
Projects

thatprovide
m

onetary
insurance

N
FT

M
arketplace

Projects
w

here
users

can
buy/sell/rentN

FTs
N

FT
Lending

A
llow

users
to

colletarize
N

FTs
for

loans
C

ross
C

hain
Provide

interoperability
am

ong
blockchains

TA
B

LE
II:

B
asic

inform
ation

of
C

ode4rena
contests.#

C
ont

and
#

vuln
denote

the
num

bers
ofhosted

contests
and

in-scope
bugs,

respectively.
#

A
tten

denotes
the

num
ber

of
auditors

w
ho

have
attended

at
least

one
contest

of
the

corresponding
category,

w
hile

the
total

#
atten

denotes
the

total
num

ber
of

auditors
w

ho
have

ever
participated

in
C

ode4rena
contests.

TV
L

denotesthe
overallvalue

ofcrypto
assetsdeposited

in
the

corresponding
D

eFiprojects,i.e.,the
w

orth
of

these
projects.

C
ategories

#
C

ont
Bounty

#
A

tten
#

Vuln
TV

L

Lending
20

$
1
,1
4
5K

180
53

$
3
0
4
.8M

D
exes

13
$
1
,0
2
0K

139
70

$
8
9
8
.9M

Y
ield

12
$

9
7
0K

193
85

$
3
0
4
.8M

Services
11

$
5
3
2K

123
21

$
2
1
9
.8M

D
erivatives

9
$

5
2
5K

123
13

$
1
4
7
.8M

Y
ield

A
ggregator

9
$

3
6
5K

124
22

$
2
6
5
.5M

R
ealW

orld
A

ssets
7

$
4
0
5K

69
10

$
4
1
.8M

Stablecoins
6

$
3
6
5K

102
7

$
3
6
4
.7M

Indexes
6

$
2
1
5K

101
7

$
1
.0M

Insurance
5

$
2
9
8K

74
19

$
4
2
.9M

N
FT

M
arketplace

4
$

2
6
6K

126
8

$
4
6
.6M

N
FT

Lending
4

$
2
3
0K

108
10

$
8
.2M

C
ross

C
hain

4
$

2
5
0K

81
7

$
3
2
.0M

O
thers

3
$

1
1
0K

25
9

$
1
1
8
.3M

Total
113

$
6
.6
9
6M

358
341

$
2
.7
9
7B

•
(R

Q
4)

W
hat

are
the

sym
ptom

s
and

fixes
of

m
achine

unauditable
bugs?

C
an

they
be

properly
abstracted

such
thatautom

ated
oracles

can
be

devised.
The

firsttw
o

questions
targetallexploitable

bugs,including
m

achine
auditable

and
unauditable,to

understand
the

success
and

lim
itations

of
existing

tools.
The

last
tw

o
focus

on
the

latter
kind

on
w

hich
the

com
m

unity
shallplace

their
efforts.

D
ata

C
ollection.

W
e

collect
tw

o
datasets

of
bugs,

from
the

C
ode4rena

contests
and

real-w
orld

exploitreports.
C

ode4rena
C

ontests.
C

ode4rena
[21]

is
a

highly
reputable

audit
contest

platform
.

Each
C

ode4rena
contest

lasts
for

3-7
days

and
aim

s
to

have
real-w

orld
D

eFiprojects
audited

before
officialdeploym

ent(pre-deploym
ent),forw

hich
the

developers
of

subject
projects

com
m

it
a

bounty
in

the
range

of
$20K

to
$1M

as
incentive.Individuals,com

panies,and
institutes

from
all

over
the

w
orld

can
participate.

A
fter

the
contest,

a
group

of
C

ode4rena
judges

(i.e.,
very

experienced
auditors

elected

3

TA
B

LE
III:B

asic
inform

ation
of

surveyed
real-w

orld
exploits

C
ategories

A
ttacks

Bug
Bounties

#
Bugs

Fund
loss

#
Bugs

Bounties

Lending
1

$
5
,0
0
0K

2
$

1
,6
3
0K

D
exes

7
$

1
3
,9
5
0K

3
$

6
5K

Y
ield

6
$

2
0
,3
0
0K

1
$

1
0K

Services
3

$
5
,6
0
0K

2
$

6
1
0K

D
erivatives

-
-

2
$

2
0
0K

Y
ield

A
ggregator

1
$

2
,1
0
0K

2
$

3
0
0K

R
ealW

orld
A

ssets
2

$
1
,1
2
7K

1
$

5
0K

Stablecoins
5

$
2
1
1
,3
6
0K

-
-

Indexes
-

-
1

$
9
0K

N
FT

M
arketplace

1
$

2
0K

-
-

N
FT

Lending
2

$
5
,8
0
0K

-
-

C
ross

C
hain

-
-

1
$
1
0
,0
0
0K

O
thers

-
-

1
$

1
,0
5
0K

Total
28

$
2
6
5
,2
5
7K

16
$
1
4
,0
0
5K

by
the

com
m

unity)
and

the
project’s

developers
get

together
to

inspectthe
bug

reports,w
here

they
confirm

the
valid

ones,
classify

reports
based

on
rootcauses,and

decide
the

criticality
levelofbugs.N

ote
thateach

bug
is

assigned
a

criticality
level:

low
,

m
edium

,
or

high,
w

here
only

high-risk
bugs

can
cause

assets
loss

(and
hence

are
exploitable)

[39].The
finalrew

ard
is

decided
by

both
the

criticality
levelof

bug
and

the
num

ber
of

reports
subm

itted
for

the
bug

(m
ore

subm
issions

lead
to

a
low

er
rew

ard
as

the
bug

is
easier

than
others).

W
e

collectand
analyze

462
unique

high-risk
bugs

from
113

C
ode4rena

contests
hosted

betw
een

A
pril2021

and
June

2022.
For

each
case,w

e
inspectthe

bug
report,the

faulty
contracts

(w
hich

are
available

through
G

ithub),
and

the
project’s

doc-
um

entation.
Follow

ing
the

suggestions
in

C
laes

et
al.

[40],
each

bug
is

checked
by

at
least

tw
o

individual
researchers.

A
ny

disagreem
ent

w
ill

be
turned

to
an

additional
researcher.

W
e

reach
consensus

forallcases
afterthe

new
researchergets

involved.A
llour

researchers
are

experienced
auditors,having

participated
23

contests
from

February
2022

to
June

2022.
O

ne
of

them
w

as
invited

to
be

a
consultantfor

judges.
A

m
ong

the
462

surveyed
bugs,

w
e

identify
341

in-scope
bugs

(exploitable
by

rem
ote

users).
Table

II
presents

the
basic

inform
ation

of
surveyed

contests
and

the
in-scope

bugs.
The

firstcolum
n

presents
the

categories
of

on-chain
projects,

follow
ing

the
taxonom

y
by

D
efiLlam

a
[41],a

leading
D

eFian-
alytics

platform
.The

description
ofeach

category
is

presented
in

Table
I,w

hile
details

are
available

in
§I

of
our

supplem
en-

tary
m

aterial.O
bserve

thataround
$2.8

billions
are

protected
by

C
ode4rena

auditing,indicating
the

representativeness
ofthe

dataset,and
$6.7

m
illions

are
com

m
itted

as
bounties.

R
eal-w

orld
Exploits.

O
ur

second
dataset

com
prises

54
real-

w
orld

exploits,collected
from

postm
ortem

s
and

bugfix
review

s
of

real-w
orld

exploits
from

January
2022

to
June

2022.These
reports

are
published

by
highly-reputable

security
researchers

(e.g.,
[23],

[42])
and

com
panies

(e.g.,
[24],

[43]–[45]).
W

e
follow

the
aforem

entioned
study

m
ethodology

(for
C

ode4rena
reports).O

verall,w
e

identify
44

(outof54)in-scope
bugs.Ta-

ble
III

presents
the

basic
inform

ation.R
eal-w

orld
exploits

tar-
getpost-deploym

entcontracts,including
realattacks

launched
againston-chain

contracts
and

caused
realassetdam

age
(i.e.,

attacks),and
the

cases
in

w
hich

ethicalhackers
dem

onstrated

vulnerabilities
in

a
local

off-chain
environm

ent
and

w
ere

aw
arded

bug
bounties

by
the

projects
(i.e.,

bug
bounties).

The
firstcolum

n
of

Table
III

denotes
the

categories.C
olum

ns
2-3

denote
the

num
ber

of
in-scope

bugs
and

fund
loss

by
attacks

respectively,
w

hile
colum

ns
4-5

denote
the

ones
for

bug
bounties.

O
bserve

that,
w

hile
$14

m
illion

w
ere

paid
as

incentives
to

ethicalhackers,over
$265

m
illion

w
ere

lostdue
to

realattacks
in

the
firsthalf

of
2022;despite

the
substantial

auditing
efforts

paid
prior

to
deploym

ent,there
are

stillm
any

post-deploym
entexploitable

bugs.

Finding
1:

Although
the

D
eFi

com
m

unity
has

heavily
in-

vested
on

protecting
their

products,
the

current
supply

of
tools

and
hum

an
auditor

resourceshave
notm

etthe
dem

and.

Threats
to

Validity
The

internal
threat

to
validity

m
ainly

lies
in

hum
an

m
istakes

in
the

study.
Specifically,

w
e

m
ay

m
isclassify

a
bug

and
m

iss
a

category.To
reduce

this
threat,

w
e

ensure
each

bug
has

been
exam

ined
by

at
least

tw
o

authors.D
isagreem

ent
w

ill
be

turned
to

an
additional

author.
The

categorization
is

agreed
on

by
all

the
authors.

M
ost

authors
have

extensive
sm

artcontractauditing
experience

and
cyber-security/softw

are-engineering
expertise

in
general.

The
external

threat
to

validity
m

ainly
lies

in
the

subjects
used

in
our

study.The
bugs

w
e

study
m

ay
not

be
representative.W

e
m

itigate
the

risk
using

highly
reputable

data
sources

and
a

large
num

ber
of

bugs.Since
w

e
focus

on
recent

bug
reports,

the
study

m
ay

not
represent

historic
bugs

w
ell.H

ow
ever,w

e
argue

that
studying

up-to-date
bugs

is
of

im
portance

due
to

the
fastevolution

pace
of

the
field.

IV
.

(R
Q

1)O
N

T
H

E
E

FFE
C

T
IV

E
N

E
SS

O
F

E
X

SIST
IN

G
A

U
T

O
M

A
T

IC
T

O
O

L
S

To
understand

the
capabilities

of
existing

techniques,
w

e
exam

ine
the

literature
to

sum
m

arize
the

kinds
of

bugs
that

can
be

detected
by

existing
m

ethods.W
e

then
study

how
m

any
of

the
exploitable

bugs
in

our
datasets

fall
in

their
scope.To

em
pirically

support
the

correctness
of

our
exam

ination,
w

e
also

apply
tw

o
state-of-the-artcom

m
ercialtools

to
ourdatasets

to
see

w
hether

they
can

detectthe
bugs.

In
particular,

w
e

exam
ine

papers
published

on
top-tier

Softw
are

Engineering,
Security,

and
Program

m
ing

Language
venues

from
2017

to
2022.

O
verall,

w
e

include
38

existing
m

ethods
and

sum
m

arize
the

bugs
handled

by
them

into
17

types.W
e

callthem
m

achine-auditable
bugs

(M
A

B
).Table

IV
presents

the
M

A
B

s,
w

ith
m

ore
details

available
in

§II
of

our
supplem

entary
m

aterial.A
n

im
portant

observation
is

that
theirtestoracles

are
generaland

sufficiently
sim

ple
to

support
instantiations

in
a

w
ide

range
ofprojects.They

hence
have

a
sim

ilar
nature

to
general

oracles
used

in
traditional

softw
are

such
as

buffer-overflow
and

use-after-free.
For

exam
ple,

control-flow
hijack

bugs
(C

H
)

use
an

oracle
sim

ilar
to

that
used

in
control

flow
integrity

(C
FI)

[80],
[81]

in
traditional

softw
are.

R
eentrancy

bugs
(R

E
)

use
an

oracle
that

detects
cycles

in
an

transaction,
w

hich
is

generally
applicable

to
all

contracts.
Therefore,

they
can

hardly
cover

functional

4

F
inding 1: Although the D

eFi com
m

unity has heavily in- vested on
protecting their products, the current supply of tools and hum

an
auditor resources have not m

et the dem
and.

TA
B

LE
IV

:C
ategories

of
m

achine-auditable
bugs

ID
Bug

N
am

e
D

escription

A
F

A
ssertion

Failure
A

ssertion
is

notsatisfied.
AW

A
rbitrary

W
rite

A
rbitrary

storage
data

gets
overw

ritten
due

to
m

ism
anaged

objects
or

im
proper

proxies
BD

B
lock-state

Ether
transfer

depends
on

block
states,e.g.,

D
ependency

b
l
o
c
k
.
t
i
m
e
s
t
a
m
p

or
b
l
o
c
k
.
n
u
m
b
e
r.

C
E

C
om

piler
Error

The
contractm

is-behaves
due

to
using

an
out-

dated
com

piler
w

hich
contains

know
n

bugs.
C

H
C

ontrol-flow
H

ijack
U

sers
can

arbitrarily
controlthe

destination
of

a
control-flow

transfer.
EL

Ether
Leak

U
ser

can
freely

retrieve
ether

from
the

contract.
FE

Freezing
Ether

N
o

one
can

retrieve
a

(large)
portion

of
locked

ether
from

the
contract.

G
I

G
as-related

Issue
Execution

fails
due

to
insufficientgas.

IB
Integer

B
ug

Integer
overflow

s
or

underflow
s.

M
E

M
ishandled

Exception
The

contractdoes
notcheck

an
exception

from
externalfunction

invocations.
PL

Precision
Loss

Significantprecision
loss

during
calculation.

R
E

R
eentrancy

A
victim

function
gets

re-entered
by

an
un-

trusted
callee,leading

to
state

inconsistency.
SC

SuicidalC
ontract

A
n

arbitrary
user

can
destroy

the
contract.

TD
Transaction-ordering

The
resultof

an
execution

trace
depends

on
D

ependency
another

trace
sentby

a
differentsender.

TO
Transaction

O
rigin

The
resultof

an
execution

trace
depends

on
U

se
t
x
.
o
r
i
g
i
n

for
user

authorization.
U

V
U

ninitialized
Variable

U
ses

of
uninitialized

storage
variables.

W
P

W
eak

PR
N

G
A

pseudo-random
num

ber
generator

(PR
N

G
)

relies
on

predictable
variables.

bugs
thatrequire

dom
ain-specific

or
even

application-specific
oracles

[82]
(e.g.,the

R
edacted

C
artelbug

in
Figure

1).
Table

V
provides

the
exam

ination
results

of
existing

w
orks.

W
e

classify
them

into
four

categories:fuzzing,static
analysis,

form
alverification,and

sym
bolic

execution.O
verall,there

are
12

com
m

ercial
tools,

developed
by

leading
com

panies,
such

as
Trail

of
B

its
[83]

and
C

onsenSys
[84].

A
lso

observe
that

m
ostcom

m
ercialtools

provide
coverage

for
a

w
ide

variety
of

bugs.M
ostexisting

w
orks

(35
outof

38)
rely

on
generaland

sim
ple

oracles,orhand-coded
specifications

(e.g.,Echidna
and

VeriSol).C
ontraM

aster
proposes

an
interesting

generaloracle
that

has
the

potential
to

cover
a

w
ide

range
of

functional
bugs.

That
is,

for
a

single
asset,

the
total

balances
of

all
parties

should
notchange.A

lthough
the

advantages
of

having
such

a
general

invariant
are

prom
inent,

m
any

m
odern

D
eFi

projects
em

ploy
aggressive

and
com

plex
business

m
odels

that
are

beyond
this

invariant.
For

exam
ple,

lending
projects

are
naturally

designed
for

m
ulti-asset

business
w

ithin
w

hich
the

totalbalancesofa
single

assetisvolatile.Itisinteresting
to

see
if

sim
ilar

invariants
can

be
developed

for
these

new
contracts.

Finding
2:

Existing
techniques

rely
on

sim
ple

and
general

oracles
or

hand-coded
ones

that
are

project
specific.

Such
oracles

m
ay

notbe
sufficientfor

functionalbugs
in

general.

Forany
bug

in
ourdatasets,as

long
as

itfalls
into

the
scope

ofany
existing

w
ork

in
Table

V
(assum

ing
100%

precision
and

recall
of

these
tools),

w
e

consider
it

m
achine-auditable.

Fig-
ure

2
depicts

the
breakdow

n
of

m
achine

auditable
and

unau-
ditable

bugs
in

our
datasets.

O
bserve

that,
despite

the
over-

approxim
ation,

only
20%

exploitable
bugs

can
be

detected
by

existing
w

orks,disclosing
a

significantsupply
shortage

of

TA
B

LE
V

:Sum
m

ary
of

existing
tools.C

om
denotes

w
hether

it
is

a
com

m
ercial

tool
w

idely
used

in
real-w

orld
auditing.

O
rcl

stands
for

test
oracles,

w
here

,
,

and
denote

fixed
and

sim
ple

oracles,
hand-coded

oracles,
and

oracles
that

can
autom

atically
adaptto

cover
a

w
ide

range
of

functionalbugs,
respectively.The

rem
aining

colum
ns

presentbug
coverage.

M
achine-auditable

Bugs

Kind

Tool

Year
Com
Orcl
AF
AW
BD
CE
CH
EL
FE
GI
IB
ME
PL
RE
SC
TD
TO
UV
WP

Fuzzing R
eG

uard
[46]

18
X

C
ontractFuzzer

[47]
18

X
X

X
X

X
X

ILF
[7]

19
X

X
X

X
X

X
X

V
ultron

[48]
19

X
X

X
X

sFuzz
[49]

20X
X

X
X

X
X

X
X

X
H

arvey
[3]

20X
X

X
X

X
X

C
ontraM

aster
[50]

20
X

X
X

X
C

onFuzzius
[51]

21
X

X
X

X
X

X
X

X
X

X
Sm

artian
[6]

21X
X

X
X

X
X

X
X

X
X

X
X

X
Echidna

[52],[53]
21X

X
xFuzz

[54]
22

X
X

X
Static Analysis G

asper
[55]

17
X

Securify
[56]

18X
X

X
X

X
X

X
X

X
X

X
Vandal[57]

18
X

X
X

X
X

X
M

adM
ax

[58]
18

X
X

X
SA

SC
[59]

18
X

X
X

X
Sm

artC
heck

[60]
18X

X
X

X
X

X
X

X
Zeus

[61]
18

X
X

X
X

X
X

X
Slither

[14]
19X

X
X

X
X

X
X

X
X

X
X

X
X

X
Sereum

[62]
19

X
X

N
PC

hecker
[63]

19
X

X
X

X
X

Sensors
[64]

22
X

X
X

R
em

ix
[65]

22X
X

X
X

X
X

VerificationEC
F

[66]
17

X
Solc-Verify

[67]
19

X
X

X
VeriSol[68]

19X
X

VeriSm
art[69]

20
X

X
Solid

[70]
21

X

Symbolic Execution O
yente

[8]
16X

X
X

X
X

X
X

X
M

aian
[71]

18
X

X
X

teEther
[72]

18
X

X
X

X
O

siris
[73]

18
X

X
X

X
M

anticore
[74]

19X
X

X
X

X
X

X
X

X
X

sC
om

pile
[75]

19
X

X
X

X
X

X
M

-A
-R

[76]
21

X
Sm

arTest[77]
21

X
X

X
X

M
ythril[78]

22X
X

X
X

X
X

X
X

X
X

X
X

Sailfish
[79]

22
X

X

35
(79.5%

)

9
(20.5%

)

271
(79.5%

)

70
(20.5%

)

M
achine

U
nauditable

M
achine

A
uditable

(a) Code4rena Bugs (341)
(b) Real-w

orld Exploits (44)
Fig.2:B

reakdow
n

of
the

bugs

autom
ated

bug
finding

capabilities.W
e

em
pirically

validate
the

finding.Specifically,w
e

run
Slither

[14]
and

O
yente

[8],tw
o

state-of-the-artcom
m

ercialtools,on
our

datasets.N
either

can
detectany

m
achine

unauditable
bug

(by
our

classification).

Finding
3:

A
large

portion
of

exploitable
bugs

in
the

w
ild

(i.e.,80%
)

are
notm

achine
auditable.

W
e

speculate
the

m
ain

reason
is

Finding
2

–
existing

tools
have

lim
ited

oracles,
i.e.,

only
checking

lim
ited

properties.

5 A
ssertion Failure (A

F
), A

rbitrary W
rite (AW

), B
lock-state D

ependency (B
D

),
C

om
piler Error (C

E
), C

ontrol-flow
 H

ijack (C
H

), Ether Leak (E
L),

Freezing Ether (F
E

), G
as-related Issue (G

I), Integer B
ug (IB

),
M

ishandled Exception (M
E

), Precision Loss (PL), R
eentrancy (R

E
),

Suicidal C
ontract (SC

), Transaction-ordering D
ependency (TD

),
Transaction O

rigin U
se (TO

), U
ninitialized Variable (U

V
), W

eak PR
N

G
 (W

P)

F
inding 2: Existing techniques rely on sim

ple and general oracles
or hand-coded ones that are project specific. Such oracles m

ay not
be sufficient for functional bugs in general.

TA
B

LE
IV

:C
ategories

of
m

achine-auditable
bugs

ID
Bug

N
am

e
D

escription

A
F

A
ssertion

Failure
A

ssertion
is

notsatisfied.
AW

A
rbitrary

W
rite

A
rbitrary

storage
data

gets
overw

ritten
due

to
m

ism
anaged

objects
or

im
proper

proxies
BD

B
lock-state

Ether
transfer

depends
on

block
states,e.g.,

D
ependency

b
l
o
c
k
.
t
i
m
e
s
t
a
m
p

or
b
l
o
c
k
.
n
u
m
b
e
r.

C
E

C
om

piler
Error

The
contractm

is-behaves
due

to
using

an
out-

dated
com

piler
w

hich
contains

know
n

bugs.
C

H
C

ontrol-flow
H

ijack
U

sers
can

arbitrarily
controlthe

destination
of

a
control-flow

transfer.
EL

Ether
Leak

U
ser

can
freely

retrieve
ether

from
the

contract.
FE

Freezing
Ether

N
o

one
can

retrieve
a

(large)
portion

of
locked

ether
from

the
contract.

G
I

G
as-related

Issue
Execution

fails
due

to
insufficientgas.

IB
Integer

B
ug

Integer
overflow

s
or

underflow
s.

M
E

M
ishandled

Exception
The

contractdoes
notcheck

an
exception

from
externalfunction

invocations.
PL

Precision
Loss

Significantprecision
loss

during
calculation.

R
E

R
eentrancy

A
victim

function
gets

re-entered
by

an
un-

trusted
callee,leading

to
state

inconsistency.
SC

SuicidalC
ontract

A
n

arbitrary
user

can
destroy

the
contract.

TD
Transaction-ordering

The
resultof

an
execution

trace
depends

on
D

ependency
another

trace
sentby

a
differentsender.

TO
Transaction

O
rigin

The
resultof

an
execution

trace
depends

on
U

se
t
x
.
o
r
i
g
i
n

for
user

authorization.
U

V
U

ninitialized
Variable

U
ses

of
uninitialized

storage
variables.

W
P

W
eak

PR
N

G
A

pseudo-random
num

ber
generator

(PR
N

G
)

relies
on

predictable
variables.

bugs
thatrequire

dom
ain-specific

or
even

application-specific
oracles

[82]
(e.g.,the

R
edacted

C
artelbug

in
Figure

1).
Table

V
provides

the
exam

ination
results

of
existing

w
orks.

W
e

classify
them

into
four

categories:fuzzing,static
analysis,

form
alverification,and

sym
bolic

execution.O
verall,there

are
12

com
m

ercial
tools,

developed
by

leading
com

panies,
such

as
Trail

of
B

its
[83]

and
C

onsenSys
[84].

A
lso

observe
that

m
ostcom

m
ercialtools

provide
coverage

for
a

w
ide

variety
of

bugs.M
ostexisting

w
orks

(35
outof

38)
rely

on
generaland

sim
ple

oracles,orhand-coded
specifications

(e.g.,Echidna
and

VeriSol).C
ontraM

aster
proposes

an
interesting

generaloracle
that

has
the

potential
to

cover
a

w
ide

range
of

functional
bugs.

That
is,

for
a

single
asset,

the
total

balances
of

all
parties

should
notchange.A

lthough
the

advantages
of

having
such

a
general

invariant
are

prom
inent,

m
any

m
odern

D
eFi

projects
em

ploy
aggressive

and
com

plex
business

m
odels

that
are

beyond
this

invariant.
For

exam
ple,

lending
projects

are
naturally

designed
for

m
ulti-asset

business
w

ithin
w

hich
the

totalbalancesofa
single

assetisvolatile.Itisinteresting
to

see
if

sim
ilar

invariants
can

be
developed

for
these

new
contracts.

Finding
2:

Existing
techniques

rely
on

sim
ple

and
general

oracles
or

hand-coded
ones

that
are

project
specific.

Such
oracles

m
ay

notbe
sufficientfor

functionalbugs
in

general.

Forany
bug

in
ourdatasets,as

long
as

itfalls
into

the
scope

ofany
existing

w
ork

in
Table

V
(assum

ing
100%

precision
and

recall
of

these
tools),

w
e

consider
it

m
achine-auditable.

Fig-
ure

2
depicts

the
breakdow

n
of

m
achine

auditable
and

unau-
ditable

bugs
in

our
datasets.

O
bserve

that,
despite

the
over-

approxim
ation,

only
20%

exploitable
bugs

can
be

detected
by

existing
w

orks,disclosing
a

significantsupply
shortage

of

TA
B

LE
V

:Sum
m

ary
of

existing
tools.C

om
denotes

w
hether

it
is

a
com

m
ercial

tool
w

idely
used

in
real-w

orld
auditing.

O
rcl

stands
for

test
oracles,

w
here

,
,

and
denote

fixed
and

sim
ple

oracles,
hand-coded

oracles,
and

oracles
that

can
autom

atically
adaptto

cover
a

w
ide

range
of

functionalbugs,
respectively.The

rem
aining

colum
ns

presentbug
coverage.

M
achine-auditable

Bugs

Kind

Tool

Year
Com
Orcl
AF
AW
BD
CE
CH
EL
FE
GI
IB
ME
PL
RE
SC
TD
TO
UV
WP

Fuzzing R
eG

uard
[46]

18
X

C
ontractFuzzer

[47]
18

X
X

X
X

X
X

ILF
[7]

19
X

X
X

X
X

X
X

V
ultron

[48]
19

X
X

X
X

sFuzz
[49]

20X
X

X
X

X
X

X
X

X
H

arvey
[3]

20X
X

X
X

X
X

C
ontraM

aster
[50]

20
X

X
X

X
C

onFuzzius
[51]

21
X

X
X

X
X

X
X

X
X

X
Sm

artian
[6]

21X
X

X
X

X
X

X
X

X
X

X
X

X
Echidna

[52],[53]
21X

X
xFuzz

[54]
22

X
X

X

Static Analysis G
asper

[55]
17

X
Securify

[56]
18X

X
X

X
X

X
X

X
X

X
X

Vandal[57]
18

X
X

X
X

X
X

M
adM

ax
[58]

18
X

X
X

SA
SC

[59]
18

X
X

X
X

Sm
artC

heck
[60]

18X
X

X
X

X
X

X
X

Zeus
[61]

18
X

X
X

X
X

X
X

Slither
[14]

19X
X

X
X

X
X

X
X

X
X

X
X

X
X

Sereum
[62]

19
X

X
N

PC
hecker

[63]
19

X
X

X
X

X
Sensors

[64]
22

X
X

X
R

em
ix

[65]
22X

X
X

X
X

X

VerificationEC
F

[66]
17

X
Solc-Verify

[67]
19

X
X

X
VeriSol[68]

19X
X

VeriSm
art[69]

20
X

X
Solid

[70]
21

X

Symbolic Execution O
yente

[8]
16X

X
X

X
X

X
X

X
M

aian
[71]

18
X

X
X

teEther
[72]

18
X

X
X

X
O

siris
[73]

18
X

X
X

X
M

anticore
[74]

19X
X

X
X

X
X

X
X

X
X

sC
om

pile
[75]

19
X

X
X

X
X

X
M

-A
-R

[76]
21

X
Sm

arTest[77]
21

X
X

X
X

M
ythril[78]

22X
X

X
X

X
X

X
X

X
X

X
X

Sailfish
[79]

22
X

X

35
(79.5%

)

9
(20.5%

)

271
(79.5%

)

70
(20.5%

)

M
achine

U
nauditable

M
achine

A
uditable

(a) Code4rena Bugs (341)
(b) Real-w

orld Exploits (44)
Fig.2:B

reakdow
n

of
the

bugs

autom
ated

bug
finding

capabilities.W
e

em
pirically

validate
the

finding.Specifically,w
e

run
Slither

[14]
and

O
yente

[8],tw
o

state-of-the-artcom
m

ercialtools,on
our

datasets.N
either

can
detectany

m
achine

unauditable
bug

(by
our

classification).

Finding
3:

A
large

portion
of

exploitable
bugs

in
the

w
ild

(i.e.,80%
)

are
notm

achine
auditable.

W
e

speculate
the

m
ain

reason
is

Finding
2

–
existing

tools
have

lim
ited

oracles,
i.e.,

only
checking

lim
ited

properties.

5

B
reakdow

n of the B
ugs

F
inding 3: A large portion of exploitable bugs in the w

ild (i.e.,
80%

) are not m
achine auditable..

Auditing Difficulty

52.46%

27.87%

6.56%

0.00%

1.64%

11.48%

54.29%

20.00%

7.76%

6.12%

3.27%

8.57%

0.00%

20.00%

40.00%

60.00%

80.00%

1
2

3
4

5
>= 6

M
achine U

nauditable

M
achine A

uditable

Fig.
3:

O
verall

auditing
difficulty.

Each
bar

denotes
how

m
any

m
achine

(un-)auditable
bugs

are
reported

by
the

given
num

ber
of

auditors,
w

here
x-axis

and
y-axis

denote
the

num
ber

of
auditors

and
the

ratio
w

.r.t.
the

total
num

ber
of

m
achine

(un-)auditable
bugs,respectively.

N
ote

that
it

does
not

suggest
existing

tools
are

ineffective.
It

is
w

ell
possible

that
a

large
num

ber
of

m
achine

auditable
bugs

have
been

detected
and

prevented
during

developm
ent

(and
hence

notpresentin
our

datasets).

V
.

(R
Q

2)O
N

T
H

E
D

IFFIC
U

LT
Y

O
F

A
U

D
IT

IN
G

E
X

PL
O

ITA
B

L
E

B
U

G
S

Itis
in

generalvery
hard

to
determ

ine
the

difficulty
levelof

detecting
certain

bugs,
by

tools
or

m
anual

efforts.
H

ow
ever,

the
C

ode4rena
contests

provide
a

perfectplatform
to

quantify
bug

difficulties.
Specifically,

each
contest

is
participated

by
a

large
num

ber
of

independent
auditors,

w
ho

subm
it

their
reports

separately.A
lthough

there
are

skilllevelvariations
of

the
auditors,w

e
consider

the
num

ber
of

subm
itted

reports
for

a
bug

suggests
the

relative
difficulty

levelin
finding

the
bug,

intuitively,few
er

bug
reports,harder

to
find.

Figure
3

delineates
the

difficulty
of

auditing
exploitable

bugs.
It

show
s

that
52.46%

of
m

achine
auditable

bugs
and

54.29%
of

m
achine

unauditable
bugs

are
only

reported
by

a
single

auditor,
and

hence
m

ost
difficult.

The
ratios

for
m

achine
auditable

and
unauditable

bugs
found

by
tw

o
auditors

are
27.87%

and
20.00%

,
respectively.

O
nly

around
25%

of
exploitable

bugs
are

found
by

three
or

m
ore

auditors.

Finding
4:

M
ajority

ofexploitable
bugs

are
difficultto

find.

A
lso

observe
that

the
difficulty

distributions
of

m
achine

auditable
and

unauditable
bugs

are
quite

sim
ilar.That

is,the
m

ajority
ofbugs

in
eitherkind

are
difficult.There

are
m

ultiple
possible

explanations.O
ne

is
thatthe

m
achine

auditable
bugs

in
the

w
ild

are
already

left-over
after

tool
scanning

during
developm

ent.A
s

such,they
are

found
by

m
anualefforts

during
contests.N

ote
thatitis

im
possible

to
know

ifthe
auditors

used
tools

orm
anualefforts

to
find

these
bugs.A

notherexplanation
is

thatbugs
thatare

difficultforhum
ans

are
likely

difficultfor
tools

as
w

elldue
to

sim
ilar

inherentchallenges
in

analysis.

Finding
5:

There
are

no
obvious

differences
betw

een
audit

difficulty
distributions

of
m

achine-auditable
and

m
achine-

unauditable
bugs.

V
I.

(R
Q

3)O
N

T
H

E
C

A
T

E
G

O
R

IE
S

O
F

M
A

C
H

IN
E

U
N

A
U

D
ITA

B
L

E
B

U
G

S

Since
80%

of
exploitable

bugs
are

not
m

achine
auditable,

w
e

focus
on

such
bugs

in
the

restofthe
paper.In

this
section,

P
rice O

racle M
an

ip
u
latio

n
E

rro
n
eo

u
s A

cco
u
n
tin

g
ID

 U
n
iq

u
en

ess V
io

latio
n
s

In
co

n
sisten

t S
tate U

p
d
ates

P
riv

ileg
e E

scalatio
n

A
to

m
icity

 V
io

latio
n
s

C
o
n
tract Im

p
l S

p
ecific B

u
g
s

C
o
d
e4

ren
a B

u
g
s (2

7
1
)

R
eal-w

o
rld

 E
x
p
lo

its (3
5
)

(5
.9

%
) 1

6
(2

6
.6

%
) 7

2(1
5
.9

%
) 4

3

(1
8
.1

%
) 4

9(9
.2

%
) 2

5
(8

.1
%

) 2
2

(1
6
.2

%
) 4

4

1
2
 (3

4
.3

%
)

3
 (8

.6
%

)
1
 (2

.9
%

)
4
 (11

.4
%

)

8
 (2

2
.9

%
)

2
 (5

.7
%

)

5
 (1

4
.3

%
)

Fig.4:B
reakdow

n
of

differenttypes
of

M
U

B
s

TA
B

LE
V

I:A
uditing

difficulties
for

M
U

B
s

of
differenttypes

#
Auditors

Types
1

2
3

4
5

>
=

6

Price
O

racle
M

anipulation
75.00%

12.50%
0.00%

0.00%
0.00%

12.50%
Erroneous

A
ccounting

59.09%
21.21%

7.58%
6.06%

3.03%
3.03%

ID
U

niqueness
V

iolations
42.86%

17.14%
8.57%

11.43%
5.71%

14.29%
InconsistentState

U
pdates

53.33%
22.22%

2.22%
6.67%

6.67%
8.89%

Privilege
Escalation

56.52%
21.74%

8.70%
4.35%

0.00%
8.70%

A
tom

icity
V

iolations
57.14%

19.05%
4.76%

4.76%
4.76%

9.52%
C

ontractIm
plSpecific

B
ugs

46.15%
20.51%

17.95%
5.13%

0.00%
10.26%

w
e

aim
to

categorize
m

achine
unauditable

bugs
according

to
their

rootcauses
and

study
their

distributions.

A.
Root

C
auses

and
C

ategorization
The

271+35
m

achine
unauditable

bugs
can

be
grouped

into
7

categories:
(C

1)
price

oracle
m

anipulation;
(C

2)
erroneous

accounting;
(C

3)
ID

uniqueness
violations;

(C
4)

inconsistent
state

updates;(C
5)

privilege
escalation;(C

6)
atom

icity
viola-

tions;
and

(C
7)

im
plem

entation
specific

bugs.
Their

distribu-
tions

can
be

found
in

Figure
4.W

e
also

presenttheirdifficulty
levels

in
Table

V
I,using

the
sam

e
m

etric
as

Figure
3.

(C
1)

Price
O

racle
M

anipulation.
Sm

art
contracts

usually
resort

to
external

authorities
on

Ethereum
,

w
hich

are
also

contracts
called

price
oracles,

to
determ

ine
the

price
of

an
asset.O

racles
use

certain
rules

to
determ

ine
prices

(e.g.,based
on

reserve
balances).H

ow
ever,if

an
application

contractdoes
not

use
a

price
oracle’s

A
PIs

properly,
the

adversary
can

interact
w

ith
the

price
oracle

in
a

legit
w

ay
to

influence
the

price
query

result
returned

to
the

application
contract

to
gain

illegalprofits.M
ore

detailed
explanation

and
an

exam
ple

can
be

found
in

§V
II-A

.
It

is
one

of
the

m
ost

notorious
types

of
vulnerabilities

in
the

D
eFi

history,
causing

at
least

$44.8
m

illions
loss

in
the

first
half

of
2022

alone.
A

s
show

n
in

Figure
4,

it
constitutes

6%
of

the
C

ode4rena
bugs

(the
least

com
m

on
bug)

and
34%

of
the

real-w
orld

exploits
(the

m
ost

com
m

on
exploit).Table

V
I

show
s

that
the

auditing
difficulty

ofsuch
bugs

is
significantly

higherthan
others.A

s
such

m
any

of
them

evade
auditing

and
getexploited

after
deploym

ent.
(C

2)
Erroneous

A
ccounting.

M
any

sm
art

contracts
im

ple-
m

ent
com

plex
business

m
odels.

The
im

plem
entations

hence
involve

a
lot

of
difficult-to-interpret

num
erical

com
putation.

W
e

call
incorrect

im
plem

entations
of

underlying
business

m
odel

form
ulas

erroneous
accounting

bugs.These
bugs

usu-
ally

introduce
sm

all
errors

every
tim

e
they

are
exercised.

H
ow

ever,these
errors

can
accum

ulate
and

induce
substantial

loss.Forexam
ple,C

om
pound

Finance
[85],a

flagship
lending

contract,w
as

exploited
and

had
over

$80
m

illions
stolen,due

to
an

unnoticeable
problem

atic
calculation

of
annualpercent-

age
yield

[86].The
bug

survived
9

rounds
of

auditing
by

top

6

O
verall A

uditing D
ifficulty

52.46%

27.87%

6.56%

0.00%

1.64%

11.48%

54.29%

20.00%

7.76%

6.12%

3.27%

8.57%

0.00%

20.00%

40.00%

60.00%

80.00%

1
2

3
4

5
>= 6

M
achine U

nauditable

M
achine A

uditable

Fig.
3:

O
verall

auditing
difficulty.

Each
bar

denotes
how

m
any

m
achine

(un-)auditable
bugs

are
reported

by
the

given
num

ber
of

auditors,
w

here
x-axis

and
y-axis

denote
the

num
ber

of
auditors

and
the

ratio
w

.r.t.
the

total
num

ber
of

m
achine

(un-)auditable
bugs,respectively.

N
ote

that
it

does
not

suggest
existing

tools
are

ineffective.
It

is
w

ell
possible

that
a

large
num

ber
of

m
achine

auditable
bugs

have
been

detected
and

prevented
during

developm
ent

(and
hence

notpresentin
our

datasets).

V
.

(R
Q

2)O
N

T
H

E
D

IFFIC
U

LT
Y

O
F

A
U

D
IT

IN
G

E
X

PL
O

ITA
B

L
E

B
U

G
S

Itis
in

generalvery
hard

to
determ

ine
the

difficulty
levelof

detecting
certain

bugs,
by

tools
or

m
anual

efforts.
H

ow
ever,

the
C

ode4rena
contests

provide
a

perfectplatform
to

quantify
bug

difficulties.
Specifically,

each
contest

is
participated

by
a

large
num

ber
of

independent
auditors,

w
ho

subm
it

their
reports

separately.A
lthough

there
are

skilllevelvariations
of

the
auditors,w

e
consider

the
num

ber
of

subm
itted

reports
for

a
bug

suggests
the

relative
difficulty

levelin
finding

the
bug,

intuitively,few
er

bug
reports,harder

to
find.

Figure
3

delineates
the

difficulty
of

auditing
exploitable

bugs.
It

show
s

that
52.46%

of
m

achine
auditable

bugs
and

54.29%
of

m
achine

unauditable
bugs

are
only

reported
by

a
single

auditor,
and

hence
m

ost
difficult.

The
ratios

for
m

achine
auditable

and
unauditable

bugs
found

by
tw

o
auditors

are
27.87%

and
20.00%

,
respectively.

O
nly

around
25%

of
exploitable

bugs
are

found
by

three
or

m
ore

auditors.

Finding
4:

M
ajority

ofexploitable
bugs

are
difficultto

find.

A
lso

observe
that

the
difficulty

distributions
of

m
achine

auditable
and

unauditable
bugs

are
quite

sim
ilar.That

is,the
m

ajority
ofbugs

in
eitherkind

are
difficult.There

are
m

ultiple
possible

explanations.O
ne

is
thatthe

m
achine

auditable
bugs

in
the

w
ild

are
already

left-over
after

tool
scanning

during
developm

ent.A
s

such,they
are

found
by

m
anualefforts

during
contests.N

ote
thatitis

im
possible

to
know

ifthe
auditors

used
tools

orm
anualefforts

to
find

these
bugs.A

notherexplanation
is

thatbugs
thatare

difficultforhum
ans

are
likely

difficultfor
tools

as
w

elldue
to

sim
ilar

inherentchallenges
in

analysis.

Finding
5:

There
are

no
obvious

differences
betw

een
audit

difficulty
distributions

of
m

achine-auditable
and

m
achine-

unauditable
bugs.

V
I.

(R
Q

3)O
N

T
H

E
C

A
T

E
G

O
R

IE
S

O
F

M
A

C
H

IN
E

U
N

A
U

D
ITA

B
L

E
B

U
G

S

Since
80%

of
exploitable

bugs
are

not
m

achine
auditable,

w
e

focus
on

such
bugs

in
the

restofthe
paper.In

this
section,

P
rice O

racle M
an

ip
u
latio

n
E

rro
n
eo

u
s A

cco
u
n
tin

g
ID

 U
n
iq

u
en

ess V
io

latio
n
s

In
co

n
sisten

t S
tate U

p
d
ates

P
riv

ileg
e E

scalatio
n

A
to

m
icity

 V
io

latio
n
s

C
o
n
tract Im

p
l S

p
ecific B

u
g
s

C
o
d
e4

ren
a B

u
g
s (2

7
1
)

R
eal-w

o
rld

 E
x
p
lo

its (3
5
)

(5
.9

%
) 1

6
(2

6
.6

%
) 7

2(1
5
.9

%
) 4

3

(1
8
.1

%
) 4

9(9
.2

%
) 2

5
(8

.1
%

) 2
2

(1
6
.2

%
) 4

4

1
2
 (3

4
.3

%
)

3
 (8

.6
%

)
1
 (2

.9
%

)
4
 (11

.4
%

)

8
 (2

2
.9

%
)

2
 (5

.7
%

)

5
 (1

4
.3

%
)

Fig.4:B
reakdow

n
of

differenttypes
of

M
U

B
s

TA
B

LE
V

I:A
uditing

difficulties
for

M
U

B
s

of
differenttypes

#
Auditors

Types
1

2
3

4
5

>
=

6

Price
O

racle
M

anipulation
75.00%

12.50%
0.00%

0.00%
0.00%

12.50%
Erroneous

A
ccounting

59.09%
21.21%

7.58%
6.06%

3.03%
3.03%

ID
U

niqueness
V

iolations
42.86%

17.14%
8.57%

11.43%
5.71%

14.29%
InconsistentState

U
pdates

53.33%
22.22%

2.22%
6.67%

6.67%
8.89%

Privilege
Escalation

56.52%
21.74%

8.70%
4.35%

0.00%
8.70%

A
tom

icity
V

iolations
57.14%

19.05%
4.76%

4.76%
4.76%

9.52%
C

ontractIm
plSpecific

B
ugs

46.15%
20.51%

17.95%
5.13%

0.00%
10.26%

w
e

aim
to

categorize
m

achine
unauditable

bugs
according

to
their

rootcauses
and

study
their

distributions.

A.
RootC

auses
and

C
ategorization

The
271+35

m
achine

unauditable
bugs

can
be

grouped
into

7
categories:

(C
1)

price
oracle

m
anipulation;

(C
2)

erroneous
accounting;

(C
3)

ID
uniqueness

violations;
(C

4)
inconsistent

state
updates;(C

5)
privilege

escalation;(C
6)

atom
icity

viola-
tions;

and
(C

7)
im

plem
entation

specific
bugs.

Their
distribu-

tions
can

be
found

in
Figure

4.W
e

also
presenttheirdifficulty

levels
in

Table
V

I,using
the

sam
e

m
etric

as
Figure

3.
(C

1)
Price

O
racle

M
anipulation.

Sm
art

contracts
usually

resort
to

external
authorities

on
Ethereum

,
w

hich
are

also
contracts

called
price

oracles,
to

determ
ine

the
price

of
an

asset.O
racles

use
certain

rules
to

determ
ine

prices
(e.g.,based

on
reserve

balances).H
ow

ever,if
an

application
contractdoes

not
use

a
price

oracle’s
A

PIs
properly,

the
adversary

can
interact

w
ith

the
price

oracle
in

a
legit

w
ay

to
influence

the
price

query
result

returned
to

the
application

contract
to

gain
illegalprofits.M

ore
detailed

explanation
and

an
exam

ple
can

be
found

in
§V

II-A
.

It
is

one
of

the
m

ost
notorious

types
of

vulnerabilities
in

the
D

eFi
history,

causing
at

least
$44.8

m
illions

loss
in

the
first

half
of

2022
alone.

A
s

show
n

in
Figure

4,
it

constitutes
6%

of
the

C
ode4rena

bugs
(the

least
com

m
on

bug)
and

34%
of

the
real-w

orld
exploits

(the
m

ost
com

m
on

exploit).Table
V

I
show

s
that

the
auditing

difficulty
ofsuch

bugs
is

significantly
higherthan

others.A
s

such
m

any
of

them
evade

auditing
and

getexploited
after

deploym
ent.

(C
2)

Erroneous
A

ccounting.
M

any
sm

art
contracts

im
ple-

m
ent

com
plex

business
m

odels.
The

im
plem

entations
hence

involve
a

lot
of

difficult-to-interpret
num

erical
com

putation.
W

e
call

incorrect
im

plem
entations

of
underlying

business
m

odel
form

ulas
erroneous

accounting
bugs.These

bugs
usu-

ally
introduce

sm
all

errors
every

tim
e

they
are

exercised.
H

ow
ever,these

errors
can

accum
ulate

and
induce

substantial
loss.Forexam

ple,C
om

pound
Finance

[85],a
flagship

lending
contract,w

as
exploited

and
had

over
$80

m
illions

stolen,due
to

an
unnoticeable

problem
atic

calculation
of

annualpercent-
age

yield
[86].The

bug
survived

9
rounds

of
auditing

by
top

6

B
reakdow

n of M
achine U

nauditable B
ugs (M

U
B

)

F
inding 4: M

ajority of exploitable bugs are difficult to find.

F
inding 5: M

U
Bs can be classified to 7 categories, w

ith 85%

belonging to first six categories that are not project specific.

52.46%

27.87%

6.56%

0.00%

1.64%

11.48%

54.29%

20.00%

7.76%

6.12%

3.27%

8.57%

0.00%

20.00%

40.00%

60.00%

80.00%

1
2

3
4

5
>= 6

M
achine U

nauditable

M
achine A

uditable

Fig.
3:

O
verall

auditing
difficulty.

Each
bar

denotes
how

m
any

m
achine

(un-)auditable
bugs

are
reported

by
the

given
num

ber
of

auditors,
w

here
x-axis

and
y-axis

denote
the

num
ber

of
auditors

and
the

ratio
w

.r.t.
the

total
num

ber
of

m
achine

(un-)auditable
bugs,respectively.

N
ote

that
it

does
not

suggest
existing

tools
are

ineffective.
It

is
w

ell
possible

that
a

large
num

ber
of

m
achine

auditable
bugs

have
been

detected
and

prevented
during

developm
ent

(and
hence

notpresentin
our

datasets).

V
.

(R
Q

2)O
N

T
H

E
D

IFFIC
U

LT
Y

O
F

A
U

D
IT

IN
G

E
X

PL
O

ITA
B

L
E

B
U

G
S

Itis
in

generalvery
hard

to
determ

ine
the

difficulty
levelof

detecting
certain

bugs,
by

tools
or

m
anual

efforts.
H

ow
ever,

the
C

ode4rena
contests

provide
a

perfectplatform
to

quantify
bug

difficulties.
Specifically,

each
contest

is
participated

by
a

large
num

ber
of

independent
auditors,

w
ho

subm
it

their
reports

separately.A
lthough

there
are

skilllevelvariations
of

the
auditors,w

e
consider

the
num

ber
of

subm
itted

reports
for

a
bug

suggests
the

relative
difficulty

levelin
finding

the
bug,

intuitively,few
er

bug
reports,harder

to
find.

Figure
3

delineates
the

difficulty
of

auditing
exploitable

bugs.
It

show
s

that
52.46%

of
m

achine
auditable

bugs
and

54.29%
of

m
achine

unauditable
bugs

are
only

reported
by

a
single

auditor,
and

hence
m

ost
difficult.

The
ratios

for
m

achine
auditable

and
unauditable

bugs
found

by
tw

o
auditors

are
27.87%

and
20.00%

,
respectively.

O
nly

around
25%

of
exploitable

bugs
are

found
by

three
or

m
ore

auditors.

Finding
4:

M
ajority

ofexploitable
bugs

are
difficultto

find.

A
lso

observe
that

the
difficulty

distributions
of

m
achine

auditable
and

unauditable
bugs

are
quite

sim
ilar.That

is,the
m

ajority
ofbugs

in
eitherkind

are
difficult.There

are
m

ultiple
possible

explanations.O
ne

is
thatthe

m
achine

auditable
bugs

in
the

w
ild

are
already

left-over
after

tool
scanning

during
developm

ent.A
s

such,they
are

found
by

m
anualefforts

during
contests.N

ote
thatitis

im
possible

to
know

ifthe
auditors

used
tools

orm
anualefforts

to
find

these
bugs.A

notherexplanation
is

thatbugs
thatare

difficultforhum
ans

are
likely

difficultfor
tools

as
w

elldue
to

sim
ilar

inherentchallenges
in

analysis.

Finding
5:

There
are

no
obvious

differences
betw

een
audit

difficulty
distributions

of
m

achine-auditable
and

m
achine-

unauditable
bugs.

V
I.

(R
Q

3)O
N

T
H

E
C

A
T

E
G

O
R

IE
S

O
F

M
A

C
H

IN
E

U
N

A
U

D
ITA

B
L

E
B

U
G

S

Since
80%

of
exploitable

bugs
are

not
m

achine
auditable,

w
e

focus
on

such
bugs

in
the

restofthe
paper.In

this
section,

P
rice O

racle M
an

ip
u

latio
n

E
rro

n
eo

u
s A

cco
u

n
tin

g
ID

 U
n

iq
u

en
ess V

io
latio

n
s

In
co

n
sisten

t S
tate U

p
d

ates
P

riv
ileg

e E
scalatio

n
A

to
m

icity
 V

io
latio

n
s

C
o

n
tract Im

p
l S

p
ecific B

u
g

s

C
o

d
e4

ren
a B

u
g

s (2
7

1
)

R
eal-w

o
rld

 E
x

p
lo

its (3
5

)

(5
.9

%
) 1

6
(2

6
.6

%
) 7

2(1
5

.9
%

) 4
3

(1
8

.1
%

) 4
9(9

.2
%

) 2
5

(8
.1

%
) 2

2

(1
6

.2
%

) 4
4

1
2

 (3
4

.3
%

)
3

 (8
.6

%
)

1
 (2

.9
%

)
4

 (11
.4

%
)

8
 (2

2
.9

%
)

2
 (5

.7
%

)

5
 (1

4
.3

%
)

Fig.4:B
reakdow

n
of

differenttypes
of

M
U

B
s

TA
B

LE
V

I:A
uditing

difficulties
for

M
U

B
s

of
differenttypes

#
Auditors

Types
1

2
3

4
5

>
=

6

Price
O

racle
M

anipulation
75.00%

12.50%
0.00%

0.00%
0.00%

12.50%
Erroneous

A
ccounting

59.09%
21.21%

7.58%
6.06%

3.03%
3.03%

ID
U

niqueness
V

iolations
42.86%

17.14%
8.57%

11.43%
5.71%

14.29%
InconsistentState

U
pdates

53.33%
22.22%

2.22%
6.67%

6.67%
8.89%

Privilege
Escalation

56.52%
21.74%

8.70%
4.35%

0.00%
8.70%

A
tom

icity
V

iolations
57.14%

19.05%
4.76%

4.76%
4.76%

9.52%
C

ontractIm
plSpecific

B
ugs

46.15%
20.51%

17.95%
5.13%

0.00%
10.26%

w
e

aim
to

categorize
m

achine
unauditable

bugs
according

to
their

rootcauses
and

study
their

distributions.

A.
Root

C
auses

and
C

ategorization
The

271+35
m

achine
unauditable

bugs
can

be
grouped

into
7

categories:
(C

1)
price

oracle
m

anipulation;
(C

2)
erroneous

accounting;
(C

3)
ID

uniqueness
violations;

(C
4)

inconsistent
state

updates;(C
5)

privilege
escalation;(C

6)
atom

icity
viola-

tions;
and

(C
7)

im
plem

entation
specific

bugs.
Their

distribu-
tions

can
be

found
in

Figure
4.W

e
also

presenttheirdifficulty
levels

in
Table

V
I,using

the
sam

e
m

etric
as

Figure
3.

(C
1)

Price
O

racle
M

anipulation.
Sm

art
contracts

usually
resort

to
external

authorities
on

Ethereum
,

w
hich

are
also

contracts
called

price
oracles,

to
determ

ine
the

price
of

an
asset.O

racles
use

certain
rules

to
determ

ine
prices

(e.g.,based
on

reserve
balances).H

ow
ever,if

an
application

contractdoes
not

use
a

price
oracle’s

A
PIs

properly,
the

adversary
can

interact
w

ith
the

price
oracle

in
a

legit
w

ay
to

influence
the

price
query

result
returned

to
the

application
contract

to
gain

illegalprofits.M
ore

detailed
explanation

and
an

exam
ple

can
be

found
in

§V
II-A

.
It

is
one

of
the

m
ost

notorious
types

of
vulnerabilities

in
the

D
eFi

history,
causing

at
least

$44.8
m

illions
loss

in
the

first
half

of
2022

alone.
A

s
show

n
in

Figure
4,

it
constitutes

6%
of

the
C

ode4rena
bugs

(the
least

com
m

on
bug)

and
34%

of
the

real-w
orld

exploits
(the

m
ost

com
m

on
exploit).Table

V
I

show
s

that
the

auditing
difficulty

ofsuch
bugs

is
significantly

higherthan
others.A

s
such

m
any

of
them

evade
auditing

and
getexploited

after
deploym

ent.
(C

2)
Erroneous

A
ccounting.

M
any

sm
art

contracts
im

ple-
m

ent
com

plex
business

m
odels.

The
im

plem
entations

hence
involve

a
lot

of
difficult-to-interpret

num
erical

com
putation.

W
e

call
incorrect

im
plem

entations
of

underlying
business

m
odel

form
ulas

erroneous
accounting

bugs.These
bugs

usu-
ally

introduce
sm

all
errors

every
tim

e
they

are
exercised.

H
ow

ever,these
errors

can
accum

ulate
and

induce
substantial

loss.Forexam
ple,C

om
pound

Finance
[85],a

flagship
lending

contract,w
as

exploited
and

had
over

$80
m

illions
stolen,due

to
an

unnoticeable
problem

atic
calculation

of
annualpercent-

age
yield

[86].The
bug

survived
9

rounds
of

auditing
by

top

6

A
uditing D

ifficulty of M
U

B
s

F
inding 6: D

ifferent types of M
U

Bs have different auditing
difficulties, w

ith price oracle m
anipulation and ID

 unique- ness
violation bugs the hardest and the easiest, respectively

TA
B

LE
V

II:B
reakdow

n
of

M
U

B
s

w
.r.t.D

eFicategories

C
ategories

C
ode4rena

Bugs

C
1

C
2

C
3

C
4

C
5

C
6

C
7

Lending
3

6
4

7
9

6
8

D
exes

2
16

8
15

3
1

6
Y

ield
7

23
17

8
5

6
10

Services
0

4
2

5
0

0
3

D
erivatives

1
6

1
0

2
0

1
Y

ield
A

ggregator
1

6
0

5
0

1
4

R
ealw

orld
assets

1
0

4
3

0
0

1
Stablecoins

0
2

1
0

0
0

2
Indexes

0
0

1
2

0
2

0
Insurance

0
3

1
3

3
2

4
N

FT
M

arketplace
0

1
1

0
1

2
1

N
FT

Lending
1

1
1

0
1

1
1

C
ross

C
hain

0
1

1
1

1
0

1
O

thers
0

3
1

0
0

1
2

security
com

panies
[87]

and
even

form
alverification

[88].It
w

as
notfound

untilbeing
exploited.Figure

4
show

s
thatitis

the
m

ost
popular

type
of

C
ode4rena

bugs
(27%

)
and

the
5th

m
ostpopular

type
of

real-w
orld

exploits.A
s

Table
V

I
show

s,
its

auditing
difficulty

is
slightly

above
average,

w
ith

around
59%

being
found

by
a

single
auditor.The

reason
is

thatfinding
such

bugs
requires

substantial
dom

ain
know

ledge.
The

very
broad

participation
of

C
ode4rena

contests
seem

s
to

provide
a

good
coverage

of
dom

ain
expertise

such
thatm

any
these

bugs
can

be
captured

(although
each

by
very

few
auditors).

M
ore

details
are

in
our

supplem
entary

m
aterial(§IV

).

(C
3)

ID
U

niqueness
V

iolations.
M

ost
sm

art
contract

func-
tionalities

are
in

the
form

of
som

e
entity

(e.g.,
a

user
or

contract)
operating

on
som

e
asset

(e.g.,
an

N
FT

token).
A

s
such,

access
control

is
needed

in
these

processes
and

enti-
ties/assets

oughtto
be

uniquely
represented.W

ithin
sm

artcon-
tract

im
plem

entation,
entities

and
assets

are
usually

denoted
as

data
structures,w

hich
often

have
an

ID
field

thatuniquely
represents

an
entity/asset.H

ow
ever,developers

m
ay

forgetto
ensure

uniqueness
of

ID
fields;they

m
ay

m
istakenly

consider
other

data
fields

are
unique

and
use

them
as

replacem
entID

s.
A

s
such,the

adversary
could

im
personate

an
entity

orcreate
a

fake/duplicate
assetthathas

the
sam

e
field

value
as

som
e

real
entity/assetto

pass
the

access
controlchecks

and
then

perform
illegal

operations.
W

e
call

this
type

of
bugs

ID
uniqueness

violations.It
constitutes

16%
of

the
C

ode4rena
bugs

(43
out

of
271)

and
3%

of
real-w

orld
exploits

(1
out

of
35).

It
is

the
4th

and
the

7th
m

ost
com

m
only

seen
type

of
bugs

in
the

tw
o

respective
datasets.Such

bugs
are

relatively
easy

to
find,

w
ith

57%
reported

by
m

ultiple
auditors.This

could
explain

its
distribution

difference
in

the
tw

o
datasets

as
ID

bugs
m

ay
be

largely
found

during
auditting

(e.g.,C
ode4rena

contests).

(C
4)InconsistentState

U
pdates.Sm

artcontracts
have

m
any

state
variables

(e.g.,debts
and

collaterals)
w

ith
im

plicitcorre-
lations.For

exam
ple,the

creditlim
itof

a
user

is
proportional

to
her

collateral
in

a
lending

contract.
H

ow
ever,

w
hen

the
developers

update
one

variable,they
m

ay
forgetto

update
the

correlated
variable(s)

or
update

incorrectly.D
epending

on
the

state
variables

that
are

incorrectly
updated,the

consequences
of

this
kind

of
bugs

range
from

incorrect
statistics

to
loss

of
funds.In

the
recent

year,three
exploits

[89]–[91]
caused

around
$3.8

m
illions

loss
and

also
the

collapse
ofa

sm
artcon-

tract’s
internaleconom

y.Itconstitutes
18%

of
the

C
ode4rena

bugs
(49

out
of

271)
and

11%
of

the
real-w

orld
exploits.

It
is

the
2nd

and
the

4th
m

ost
com

m
only

seen
bugs

in
the

tw
o

datasets.The
bug

difficulty
levelis

aboutaverage.
(C

5)
Privilege

Escalation.
Sm

art
contracts

often
support

a
num

ber
of

business
flow

s,
each

denoting
a

unique
use

case.
For

exam
ple,a

lottery
contractneeds

to
supportatleastthree

distinct
flow

s
including

buying
tickets,draw

ing
w

inners,and
claim

ing
prizes.

A
business

flow
m

ay
consist

of
a

sequence
of

transactions
in

the
tem

poralorder.W
ithin

a
flow

,sensitive
operations

are
guarded

by
access

control
checks.

H
ow

ever,
there

m
ay

be
som

e
unexpected

business
flow

to
a

sensitive
operation

along
w

hich
the

access
control

is
w

eaker
than

necessary.This
is

very
sim

ilarto
privilege

escalation
bugs

that
are

very
popular

in
m

obile
applications

[20].These
bugs

have
diverse

consequences,
depending

on
the

sensitive
operations

thatare
notw

ellprotected.N
early

$7.5
m

illions
gotstolen

in
2022,due

to
privilege

escalation
bugs.It

constitutes
9.2%

of
the

C
ode4rena

bugs
and

22.9%
of

the
real-w

orld
exploits.

It
is

the
second

m
ost

popular
type

of
real-w

orld
exploits.

The
difficulty

of
auditing

them
is

aboutaverage.
(C

6)
A

tom
icity

V
iolations.

M
ultiple

business
flow

s
(i.e.,

transaction
sequences)

m
ay

interleave
and

interfere
w

ith
each

other,
by

accessing
the

sam
e

state
variables.

Som
e

business
flow

s
m

ay
require

business
level

atom
icity,

dem
anding

state
variables

cannotbe
accessed

by
otherflow

s
w

hile
they

are
on-

going.D
evelopers

do
notanticipate

such
interference

and
fail

to
ensure

(business
level)

atom
icity.The

reason
of

these
bugs

is
that

developers
m

istakenly
think

atom
icity

is
guaranteed

by
the

runtim
e

and
hence

they
do

not
need

to
be

concerned.
H

ow
ever,the

runtim
e

only
ensures

each
transaction

is
atom

ic,
and

business
flow

atom
icity,if

needed,has
to

be
ensured

by
the

developers.
A

tom
icity

violations
constitute

8.1%
of

the
C

ode4rena
bugs

and
5.7%

ofreal-w
orld

exploits.Itis
the

least
com

m
on

bugs
in

auditing,
and

the
second

least
in

the
w

ild.
They

are
slightly

harderto
find

(than
the

others),w
ith

57%
of

bugs
found

by
only

one
auditor.The

reason
is

thatitis
difficult

to
determ

ine
business

flow
s

and
if

they
need

atom
icity.

(C
7)

C
ontract

Im
plem

entation
Specific

Bugs.
W

e
find

that
16%

of
the

C
ode4rena

bugs
and

14%
of

the
real-w

orld
exploits

are
im

plem
entation

specific,m
eaning

thatthey
do

not
have

a
generaloracle

and
unlikely

appear
in

a
differentsm

art
contract.They

hence
have

a
low

priority
because

abstracting
them

m
ay

not
provide

as
valuable

guidance
as

the
others.

The
R

edacted
C

artelbug
in

Figure
1

is
an

exam
ple.

Finding
6:

M
achine

unauditable
bugs

(M
U

Bs)
can

be
classified

to
7

categories,w
ith

85%
belonging

to
categories

C
1-C

6
thatare

notprojectspecific.

Finding
7:

D
ifferenttypes

ofM
U

Bs
have

differentpopular-
ity,

w
ith

accounting
errors

(C
2)

and
price

oracle
m

anipu-
lation

(C
1)

m
ost

popular
in

the
C

ode4rena
bugs

and
the

real
exploits,

respectively.
Auditing

is
particularly

effective
in

preventing
certain

bugs
such

as
accounting

errors.

7

B
reakdow

n of the M
U

B
s w

.r.t. D
eFi C

ategories

F
inding 7: D

ifferent kinds of D
eFi projects tend to be prone to

different types of M
U

Bs.

Difficulty of Bug Fix
least

2
days

(lines
21-22).

In
lines

23-24,
the

function
then

checks
w

hetherover50%
v
o
t
i
n
g
T
o
k
e
n

holders
have

voted
for

the
proposal.

If
so,

a
critical

operation
of

setting
a

new
contractow

ner
is

perform
ed

(line
25).A

tline
28,a

privileged
function

g
e
t
L
o
c
k
e
d
F
u
n
d
s

allow
s

the
ow

ner
to

get
all

the
locked

funds.N
ote

thatboth
functions

v
o
t
e

and
e
n
d

strictly
constrain

the
invocation

tim
e,

w
hich

constitutes
an

access
control

preventing
the

tw
o

functions
from

being
invoked

in
a

single
transaction.

O
therw

ise,
an

adversary
could

invoke
function

v
o
t
e

w
ith

a
trem

endous
am

ount
of

flash-loaned
v
o
t
i
n
g
T
o
k
e
n

and
force

a
m

alicious
proposalto

go
through

(sim
ilarto

the
exploitin

§V
II-A

).H
ow

ever,an
unexpected

call
sequence

can
evade

the
access

control.
Specifically,

consider
an

adversary
A

lice
proposes

herself
as

the
ow

ner.
W

hen
the

tim
e

is
approaching

the
deadline

p
r
o
p
o
s
a
l
.
s
T
i
m
e

+
2

d
a
y
s,

she
launches

an
attack

w
rapping

the
follow

ing
actions

into
a

single
transaction,including

1)
flash-loaning

a
large

am
ount

of
v
o
t
i
n
g
T
o
k
e
n

from
its

A
M

M
contract,

2)
invoking

v
o
t
i
n
g
T
o
k
e
n
.
t
r
a
n
s
f
e
r
F
r
o
m,

a
fund

transfer
function

provided
by

allER
C

20
tokens

to
directly

transferthe
loaned

am
ount

to
the

contract
w

ithout
any

access
control,3)

invoking
e
n
d

to
becom

e
the

ow
ner,

4)
getting

locked
funds

by
function

g
e
t
L
o
c
k
e
d
F
u
n
d
s,and

5)
paying

off
the

flash-
loan

debt.Intuitively,A
lice

“votes”
w

ithoutcalling
the

v
o
t
e

function.
The

developers
did

not
anticipate

such
a

business
flow

and
hence

did
notguard

properly.⇤
A

bstractBug
M

odeland
R

em
edy.Leta

business
flow

B
be

a
sequence

oftransactions
t1 ,...,tn ,each

denoting
an

external
function

invocation,
and

n
the

length
of

flow
w

hich
m

ay
be

equalto
orlargerthan

1.A
ssum

e
B

has
som

e
criticaloperation

f
guarded

by
a

set
of

access
control

checks,
denoted

as
P

,
a

conjunction
of

m
ultiple

checks.
H

ow
ever,

there
exists

an
(unexpected)

business
flow

t 01 ,
...

t 0m
that

can
reach

f
w

ith
access

control
P

0
and

P
0
<

P
(here

the
operator

<
m

eans
w

eaker-than).The
challenges

of
identifying

this
type

of
bugs

lie
in

recognizing
sensitive

operations,
w

hich
m

ay
require

dom
ain

know
ledge,

and
finding

the
m

ultiple
paths

that
can

lead
to

the
operations.The

fixes
are

to
add

the
m

issing
access

controlchecks
or

preventthe
unexpected

paths.
C

.
O

ther
M

achine
U

nauditable
Bug

Types
O

ther
m

achine
unauditable

bug
types

are
detailed

in
our

supplem
entary

m
aterial(§III

-§V
II).

Finding
10:Five

outofthe
seven

M
U

B
categories

(account-
ing

for
60%

of
M

U
Bs),nam

ely,all
except

(C
2)

accounting
errors

and
(C

7)
im

plem
entation

specific
bugs,have

general
abstract

m
odels

w
hich

m
ay

serve
as

oracles
for

future
autom

ated
tools.

D
.

D
ifficulty

ofBug
Fix

W
e

inspect
the

patches
for

C
ode4rena

bugs.For
each

bug,
w

e
use

g
i
t

b
l
a
m
e

on
the

up-to-date
version

of
its

project’s
repository.W

e
then

find
the

com
m

itor
pullrequestproposed

to
fix

the
bug.

W
e

exclude
com

m
ents,

blank
lines,

and
unit

tests,w
hen

counting
the

lines
ofcode.Table

V
IIIpresents

the
results.R

ow
s

LoC
(+)

and
LoC

(-)
denote

how
m

any
lines

of

TA
B

LE
V

III:
Patches

for
M

U
B

s.C
1

C
2

C
3

C
4

C
5

C
6

LoC
(+)

9.6
6.0

12.4
14.8

6.6
8.5

LoC
(-)

2.6
4.4

8.4
13.2

0.6
5.8

TA
B

LE
IX

:G
uided

auditing
C

1
C

2
C

3
C

4
C

5
C

6
C

7

#
B

ugs
(15)

2
2

1
1

4
2

3

TotalB
ounty

Aw
arded

$
1
0
2
,6
6
0

TotalFunds
Protected

$
2
2
.5
2

M

code
developers

added
and

rem
oved

on
average

to
fix

bugs
of

each
type.

O
bserve

that
(C

2)
erroneous

accounting
and

(C
5)

privilege
escalation

bugs
only

require
around

7-10
lines

to
fix.

(C
4)

Inconsistent
state

update
bugs

require
m

ore
lines

to
fix,

because
the

patches
tend

to
use

a
new

s
t
r
u
c
t

to
pack

all
correlated

state
variables,leading

to
m

ore
changes.

Finding
11:

Itis
usually

notdifficultto
fix

M
U

Bs
(i.e.,w

ith
15

lines
ofchanges

on
average).

V
III.

G
U

ID
E

D
A

U
D

IT
IN

G

W
e

started
to

audit
real-w

orld
contracts

using
our

findings
as

the
guidance

since
A

pril2022.B
y

the
tim

e
of

w
riting,w

e
have

found
15

confirm
ed

zero-days
w

ith
a

few
m

ore
under

the
inspection

of
judges.Table

IX
sum

m
arizes

the
confirm

ed
bugs

for
individual

bug
types.

A
ll

the
confirm

ed
ones

are
rated

critical.W
e

also
participated

in
three

C
ode4rena

contests
in

July
and

ranked
#1

in
one

of
them

,
out

of
the

⇠
100

team
s/individuals

thathad
subm

itted
atleastone

valid
report.

The
othertw

o
contestresults

are
stillin

the
hands

ofjudges
by

the
tim

e
ofsubm

ission.O
uraggregated

bounty
is
$102,660

so
far

and
the

totalfunds
protected

due
to

our
reports

add
up

to
$22.52

m
illions.M

ore
im

portantly,w
e

have
strategized

based
on

ourfindings.Forexam
ple,w

e
have

focused
on

finding
price

oracle
m

anipulations
(PO

M
)

and
privilege

escalations
(PE),

the
tw

o
m

ost
popular

bugs
according

to
our

study
and

found
2

PO
M

s
and

4
PEs.W

e
also

prioritize
the

bug
types

to
audit

according
to

the
project’s

category.
The

abstract
bug

m
odels

are
quite

helpful
too.

For
exam

ple,
w

hen
w

e
w

ere
looking

for
PE

bugs,
w

e
first

identified
a

critical
operation

f
(see

Section
V

II-B
)

and
then

listed
their

enclosing
business

flow
s

explicit
from

the
code,

leveraging
docum

entation
and

code
hints

such
as

tim
e

w
indow

s
and

locks.W
e

then
exhaustively

enum
erate

other(usually
im

plicit)operation
paths

reaching
the

sam
e
f

and
check

their
access

control.

IX
.

R
E

L
A

T
E

D
W

O
R

K

There
are

a
body

of
existing

em
pirical

studies
of

sm
art

contractbugs
[25]–[28],[95],[96].C

om
pared

to
these

studies,
w

e
do

not
focus

on
bugs

in
the

developm
ent

stage.
W

e
study

a
large

num
ber

of
latestexploitable/exploited

bugs.W
e

study
unique

perspectives
such

as
prevalence,difficulty

level,
abstractm

odels,and
fixes.D

etailed
com

parison
can

be
found

in
§V

III
of

our
supplem

entary
m

aterial.

X
.

C
O

N
C

L
U

SIO
N

W
e

study
516

sm
artcontractsecurity

bugs
and

exploits.W
e

categorize
them

by
root

causes
and

study
their

distributions,
repair

strategies,
and

audit
difficulty

levels.
W

e
have

six
findings.

W
e

also
perform

guided
auditting

based
on

these
findings

and
have

found
15

criticalzero-days
in

three
m

onths
thatcould

endanger
$22.52

m
illions

funds
if

exploited.

10

F
inding 8: It is usually not

difficult to fix M
U

Bs (i.e., w
ith

15 lines of changes on average).

